The goal of the TECMAT project is the development of a novel type of thermal and electrical conductive compound with high conductivity and improved processability in a wide range of processing techniques, that will broaden the scope of possible applications for conductive composites. 


The basic idea is to create a composite, consisting of medium viscosity conductive composite domains in which the conductive fillers are concentrated and that is embedded in a low viscous matrix polymer. With this combination, the viscosity of the composite melt can be kept low compared to classical conductive composites with conductive fillers in a one-phase matrix at comparable levels of conductivity. The conductive domains are deformed during processing, forming a conductive network in the matrix polymer of the final part (“coalescence approach”).

TECMAT webpage

Aim

This ambitious goal will be approached as follows:

  • The use of immiscible polymers in order to achieve a conductive micro- and nanostructured network of the conductive polymer in the surrounding non-conductive matrix
  • The use of special compounding for the production of the new multi-component composites 
  • As the micro- and nanostructure of the final material is formed during the processing of the melt for shaping the final part, the influence of the processing parameters and flow patterns on the structure formation and conductivity levels will be studied in order to produce the intended conductivity levels and the spatial distribution of conductive areas in the part
  • The use of compatibilizers for the improvement of the processability of the multi-component melt and the thermal, electrical and mechanical properties of the final parts will be studied

Thermal and electrical conductive thermoplastic materials are of high interest for a large range of applications, including textiles (e.g. monofilaments, knitted fabrics etc.) and compact plastic parts (e.g. injection moulded). Conductive plastics allow lightweight, integrated multi-functional and complex design solutions vs. metal structures and have recycling advantages. 

Although conductive thermoplastic compounds are already available on the market, their widespread breakthrough in lightweight, multifunctional applications is limited by certain obstacles. The most important issue is finding the balance between a high conductivity and a stable and easy processability. Conductive fillers significantly raise the viscosity that actually complicates the processing of thin-walled parts and textile fibres. Due to orientation and agglomeration of the fillers, the conductivity might drop during processing. Furthermore, the conductive fillers affect the resulting mechanical properties, for example by reducing the impact strength. Therefore, the innovations proposed within TECMAT are essential. 

Triggered by the project results, the (SME) members will be stimulated to develop their own thermal and electrical conductive products with improved properties. Protective clothing, smart or heated textiles, heat dissipators, housings for mobile devices, decided aspects of electromagnetic shielding and copper cable replacement are some of the many possible applications.

TECMAT will thus generate opportunities along the entire textile and plastics production value chain: producers of polymers and additives, formulators, compounders, textile companies, plastic converters and textile and plastic equipment providers.

This knowledge transfer may help your company!

To participate in the project, contact Birgit Stubbe or Stijn Corneillie or fill in the form below:

Collective Research & Development and Collective Knowledge Transfer (COOCK), financed by Vlaio


Project HBC.2019.2687


1/6/2020 – 31/05/2022